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al, 2016;  Kubinova et al, 2017). In a study using 
the MicroPlaSter® on infected chronic wounds, 
once daily CAPP application for 2–5 minutes 
significantly reduced the number of bacteria in the 
wounds compared to untreated controls (Isbary et 
al, 2012). A clinical trial that used a dielectric barrier 
discharge (DBD) plasma source (PlasmaDerm®  

VU-2010) as adjunctive therapy for chronic venous 
leg ulcers showed that treatment is safe, generally 
well tolerated and effectively reduces bacterial 
load (Brehmer et al, 2015). Additional studies 
have shown improved wound healing using a 
CAPP jet device (Hilker et al, 2017) and following 
pretreatment with octenidine dihydrochloride 
(Hartwig et al, 2017a) in cases of infection. 

CAPP stimulates the migration and proliferation 
of keratinocytes and fibroblasts (Arndt et al, 2013; 
Schmidt et al, 2017). Clinically-accelerated wound 
healing was observed in chronic wounds (Isbary 
et al, 2013; Brehmer et al, 2015) and at skin graft 
donor sites treated with CAPP (Heinlin et al, 2013). 
In addition to faster wound closure, Heinlin et 
al (2010) observed significant pain reduction 
within 5 days of CAPP treatment compared to the 
untreated control group. Kisch et al (2016a) studied 
changes in the intact skin of healthy volunteers 
after CAPP and demonstrated that CAPP probably 
works by influencing microcirculation. Plasma 
application in vivo led to a fast increase in dermal 
microcirculation parameters such as capillary–
venous oxygen saturation, relative haemoglobin, 

Physical plasmas are a common natural 
phenomenon; about 99% of all visible 
matter in the universe exists in the plasma 

state, which refers to a partially or completely 
ionised gas generated by energy input. Plasmas 
can be artificially generated; the most common 
methods of gas dissociation are electricity, 
microwave radiation or heat (Lackmann and 
Bandow, 2014). The development of cold 
atmospheric pressure plasmas (CAPPs) for 
therapeutic purposes has led to the emergence 
of a new field of application and research called 
plasma medicine. ‘Cold’ in this case describes 
temperatures of around 40°C on the substrate 
being treated. These temperatures allow the 
painless treatment of human tissues (Lackmann 
and Bandow, 2014; Heuer et al, 2015).

Clinical applications of CAPP range from 
surface decontamination to the sterilisation of 
medical instruments to wound healing, as well 
as skin disinfection, infection control for the 
treatment of inflammatory skin diseases and 
oncological applications. Wound treatment is 
a promising clinical application, as CAPPs have 
antimicrobial properties as well as stimulating 
skin cells and angiogenesis (Haertel et al, 2014). 
Different plasma devices have been shown to kill 
pathogens (Morfill et al, 2009; Daeschlein et al, 
2015), decontaminate skin (Fridman et al, 2008) 
demonstrated skin and suppress bacterial growth 
on skin wounds (Lademann et al, 2010; Nasir et 
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In recent years, plasma medicine has become an innovative research area 
with great potential. Plasma — the fourth state of matter — is an ionised 
gas and can be produced from argon, helium, nitrogen, oxygen or air 
at atmospheric pressure and low temperatures. Such cold atmospheric 
pressure plasmas (CAPPs) consist of a mixture of reactive species that 
convey antimicrobial activity and affect human tissues. The development 
of CAPP devices has led to novel therapeutic strategies in wound healing, 
tissue regeneration and skin infection management. CAPPs have become 
an increasingly important alternative for antimicrobial treatment as 
bacterial resistance is unlikely due to their versatile modes of action. 
The greatest challenge in CAPPs introduction in clinical practice remains 
understanding their mechanisms of action at the cellular level for safe, 
targeted application.
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blood flow and velocity lasting at least 1 hour 
(Heuer et al, 2015), which could be of particular 
interest in diabetic wounds.

Mode of action
CAPPs are electrically conductive, quasi-neutral 
gases consisting of electrons, negative and 
positive ions, free radicals, reactive molecules, 
and ultraviolet (UV) radiation [Figure 1]. They 
generate visible light, heat and electromagnetic 
radiation (O’Connor et al, 2014). As CAPP 
sources are operated at ambient pressure in 
contact with air, large amounts of reactive 
oxygen and nitrogen radicals are generated. 
These exert antimicrobial effects and have 
a strong influence on cellular biochemistry 
(Gay-Mimbrera et al, 2016; Szili et al, 2018). For 
example, atomic oxygen, ozone, superoxide, 
hydroxyl radicals, nitric oxide and hydrogen 
peroxide are all known to kill microorganisms 
by attacking microbial structures in various 
ways (Laroussi, 2005; Lackmann and Bandow, 
2014). Reactive oxygen components etch 
the outer cell capsule exposing the cellular 
membrane (Laroussi, 2002), which makes the 
unsaturated fatty acids in the phospholipid 
bilayer susceptible to more plasma-induced 
radicals (Stoffels et al, 2008). 

Further oxidation of the cellular protein 
components and DNA alters their structure 
and causes functional changes, disrupting cell 

metabolism and preventing cell replication 
(Sharma et al, 2009; O’Connor et al, 2014). 

CAPPs effectively inactivate microorganisms 
(Hong et al, 2009; Hähnel et al, 2010; Kim et al, 
2011; Zimmermann et al, 2011; Matthes et al, 2012; 
Daeschlein et al, 2012b; Li et al, 2013; Wiegand 
et al, 2014), successfully eliminate antibiotic-
resistant pathogens (Maisch et al, 2012; Daeschlein 
et al, 2014; Alkawareek et al, 2014) and remove 
microbial biofilms (Joshi et al, 2010; Alkawareek et 
al, 2012; Fricke et al, 2012; Julak and Scholtz, 2013; 
Matthes et al, 2013), as well as killing bacterial and 
fungal spores (Trompeter et al, 2002; Klämpfl et al, 
2012). However, differences in efficacies have to 
be noted. Gram-positive bacteria possess a thick 
cell wall, which conveys higher tolerance to CAPP, 

Figure 1. Plasma is the fourth 
state of matter, a partially or 
completely ionised gas that 
is generated by energy input. 
Plasmas can be artificially 
generated through gas 
dissociation by electricity, 
microwave radiation or heat 
under ambient conditions. 
If the ejection of the normal 
pressure plasma is very fast, the 
electrons and heavy particles 
are not in thermal equilibrium 
and the resulting temperature 
is only between 25°C and 45°C. 
These plasmas are called cold 
atmospheric plasmas (CAPP). 
They consist of electrons, 
negative and positive ions, free 
radicals and reactive molecules 
as well as UV and other 
radiation. 
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bleeding and debulk tumours (Raiser and Zenker, 
2006). The more recent PlasmaJet Surgery System 
is commonly used to cut or coagulate tissue. In 
electrosurgery, the plasma interacts with the 
tissue, denaturing proteins, destroying cells and 
devitalising (sealing) local tissue (von Woedtke et 
al, 2013; Gay-Mimbrera et al, 2016).

Generally, the CAPP discharge is created and 
maintained by applying high voltage to gas 
flowing between two dielectric-covered electrodes 
(O’Connor et al, 2014). The properties of the plasma 
depend on parameters such as gas flow and the 
type of gas used, as well as discharge geometry 
(Heuer et al, 2015). A mixture of active agents is 
created, the composition and concentration of 
which result in different biological responses (Gan 
et al, 2018). 

There are two main approaches to generating 
CAPP: indirect and direct systems (Yan et al, 2017). 
Indirect plasma sources are characterised by 
self-contained systems. The plasma is ignited in 
a tube through which gas — usually helium or 
argon — flows between two electrodes (Stoffels 
et al, 2002; Weltmann et al, 2009; Mai-Prochnow 
et al, 2014; Yan et al, 2017). The active species are 
then transported as effluent within the gas stream, 
ensuring that the treated surface does not come 
into direct contact with the plasma (Stoffels et al, 
2002; Weltmann et al, 2009; Mai-Prochnow et al, 
2014; Gay-Mimbrera et al, 2016). 

Plasma is generated between the electrode 
and the biological sample — which serves as the 
counter-electrode — in direct systems (Heuer et 
al, 2015; Gay-Mimbrera et al, 2016). The plasma 
therefore comes into direct contact with the 
surface being treated (Mai-Prochnow et al, 2014). 
DBD sources directly generate plasma in air. In 
some applications, oxygen and nitrogen are added 
to produce a specific chemical CAPP composition 
(Yan et al, 2017). The continuous flow of carrier gas 
creates a ‘flame’ in the plasma jet while the DBD 
source provides a short but wide plasma; therefore, 
the former may be more suitable for the treatment 
of small areas and the latter more appropriate for 
large areas (Yan et al. 2017).

The development of new devices optimised 
for specific clinical applications is well under way. 
Several CAPP devices are CE-certified and available 
for use in wound treatment (Karrer and Arndt, 
2015), the most prominent being (Boehm and 
Bourke, 2019):

 ■ MicroPlaSter (Adtec Plasma Technology Co. Ltd, 
Fukuyama, Japan)

 ■ kINPen® Med (neoplas tools GmbH, Greifswald, 
Germany)

 ■ PlasmaDerm (CYNOGY GmbH, Duderstadt, 
Germany). 

while the outer membrane of Gram-negative 
bacteria is highly sensitive to peroxidation 
and prone to electrostatic disruption by CAPP 
treatment (Mai-Prochnow et al, 2016; Nishime et al, 
2017) [Figure 1]. Furthermore, individual bacteria 
differ in (Mahadevan, 2009; Furchtgott et al, 2011): 

 ■ Cell wall composition
 ■ Cell shape
 ■ Physical properties (cell wall)
 ■ Synthesis and remodelling processes
 ■ Cell wall extension force and turgor pressure 

balance. 

Electrostatic disruption occurs when CAPP 
components strike the microbe surface, triggering 
cell wall tension leading to mechanical rupture and 
subsequent leakage of cell content (Laroussi et al, 
2003). The mechanism by which CAPP inactivates 
filamentous fungi resembles that described 
for bacteria, and fungal death is preceded by 
structural damage to the cell envelope and the 
oxidation of cell macromolecules (Šimončicová 
et al, 2018).

As with microorganisms, the effects of CAPP 
on human cells can be observed at different 
levels [Figure 1]. The first target structure is the cell 
membrane, with its lipids, embedded receptor 
proteins and enzymes. Lipid peroxidation and 
modification of cell adhesion molecules alter cell 
migration and signal transduction (Haertel et al, 
2011). UV radiation and free radicals continue 
to affect DNA and thus precede changes in 
cell proliferation or the induction of apoptosis. 
(Cao and Wan, 2009). All effects depend on the 
plasma dose/treatment time. Accordingly, both 
stimulatory and damaging effects are possible 
(Haertel et al, 2014). CAPP is well tolerated if 
treatment times are short (Stoffels et al, 2008; 
Wiegand et al, 2016). Moreover, CAPP treatment 
can stimulate eukaryotic cells, resulting in faster 
cell proliferation and enhanced angiogenesis, 
which can shorten the wound healing process 
(Lackmann and Bandow, 2014). Plasma-
dependent activation of cytokines and growth 
factors has also been reported (Arndt et al, 2013).

CAPP treatment devices
There is a long history of plasma use in medical 
treatment. The mid 19th century saw the 
introduction of electrotherapy and the use of spark 
discharges to treat various diseases (Gay-Mimbrera 
et al, 2016). Later, electrosurgical techniques were 
developed based on plasma applications. Argon 
plasma coagulation was introduced in the 1970s; 
this well-established endoscopic procedure is 
used in gastroenterology, general and visceral 
surgery, urology and gynaecology to control 
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from 1 cm2 to 22.5 cm2 (Karrer and Arndt, 2015). 
These medical devices use ambient air to 
generate the CAPP. 

Studies of the effects of plasma on skin 
microcirculation and bacterial levels in chronic 
leg ulcers found PlasmaDerm to be well 
tolerated by patients, with no pain or adverse 
effects reported (Brehmer et al, 2015; Kisch et al, 
2016a; 2010b). In addition to chronic leg ulcers, 
PlasmaDerm can be used in the management 
of arterial ulcers, pressure (decubitus) ulcers and 
diabetic foot ulcers (Karrer and Arndt, 2015).

Future potential
CAPP is a safe treatment option in wound care, 
enhancing the healing process by reducing 
bioburden and stimulating the production of 
skin cells and blood vessels. It is currently used 
as an add-on to standard wound care, usually 
three times a week. CAPP should be applied after 
debridement and the removal of any dressings. 
The overall duration of treatment is variable, 
since it depends on the wound size and plasma 
device used. 

Despite differences in application, CAPP 
effectively supports re-epithelialisation, 
angiogenesis, the formation of new hair 
follicles and collagen fibres, while controlling 
inflammation (Chatraie et al, 2018). Moreover, 
mechanical analysis has demonstrated improved 
mechanical strength and tissue tolerance to 
tensile load following CAPP treatment (Chatraie 
et al, 2018). 

CAPP has become increasingly important 
as an alternative to topical antibiotics in 
non-systemic infections. Due to its versatile 
modes of action, the development of bacterial 
resistance is unlikely. The active components of 
CAPP — reactive oxygen and reactive nitrogen 
species, UV radiation, positive and negative 
charge particles, excited-state and metastable 
particles — affect the biochemical processes of 
the organism. Different discharge parameters, 
including plasma device geometry, working gas 
species, gas flow and treatment time, affect the 
mixture of active agents resulting in different 
compositions with varying biological responses 
that have yet to be fully characterised (Gan et al, 
2018). Future research needs to fill this gap and 
ensure the long-lasting, successful application of 
new CAPP intervention options. Wint
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